Mechanical Engineering with a Foundation Year - BEng (Hons)

UCAS Code:
H308
Attendance:
Full Time (4 years), Sandwich (5 years)
Starting:
September 2019
Campus:

Our Mechanical Engineering BEng (Hons) degree with a foundation year, will develop you as a skilled engineer capable of undertaking mechanical engineering tasks within and across organisations. It will also equip you with a range of advanced analytical and design skills. You'll work on industry-standard analytical tools as well as explore other facilities such as our test cell and exhaust analysis equipment.

The Foundation Year course option enables you to study for our BEng (Hons) degree over an extended full-time duration of four years by including a Foundation Certificate (year one of four) in your studies. The Foundation Certificate provides a broad study programme that underpins the follow-on degree. In order to progress to the next year of the degree, it is necessary to achieve a pass in all modules of the Foundation Certificate.

What's covered in the course?

Our Mechanical Engineering course focuses on the importance of sustainable futures and the Government's STEM agenda, in order to give you the knowledge and attributes you will need to thrive in this ever-changing industry.

You’ll focus on project-based activities, giving you lots of opportunity to work in teams on projects from design to implementation. This will give you practical experience of applying engineering science to real world problems, working in multidisciplinary teams to develop your interpersonal skills, and prepare you for a key aspect of modern engineering practice. Problem solving and project management are key skills for an engineer, and our focus on application of skills will help to improve your skills in these highly sought after areas.

During your studies, you will use the latest tools and technologies, developing new skills at an advanced level. The course will encourage your creative thinking and develop your engineering leadership skills. Building on a foundation of the generic skills required by tomorrow’s engineers, you will also explore the wider context of engineering, as well as the application of advanced engineering principles to solve problems through research and development. You’ll engage in independent study and systematic enquiry at an advanced level and take responsibility for the conclusions drawn from it.

You will have lots of opportunity to apply industry-standard modelling and simulation techniques to the analysis, specification and design of mechanical engineering systems so that you are able to apply your knowledge and theory to a practical situation. In this way, we make sure you are ready to step straight into employment.

I decided to study at Birmingham City University because while I was in full time employment this course offered everything that I needed part time and covered all the modules that I needed to progress in my career role.

The course offered all the different practical elements as well as the theoretical elements for power generation and design – the subjects that I enjoyed and wanted to progress on to in my career. Katja Wotton Srbljanin

Why Choose Us?

  • The course offers a seamless progression from BEng to a Master’s-level award.
  • The programme has previously achieved academic accreditation from the Institution of Mechanical Engineers (IMechE) and the Institution of Engineering and Technology (IET).
  • You will be encouraged to engage in extracurricular activities, such as Formula Student and Engineering without Borders, to gain real-life experience of engineering.

This course is open to International students

School of Engineering and the Built Environment

Discover the School of Engineering and the Built Environment

Visit our School site for more student work and extra information.

Visit the School website

We are members of:

WISE member logo2 WISE members inspire girls to choose maths, physics and computing.

Course Accreditations

Accreditations:

Accreditations shall be renewed in accordance with the accreditor’s standard review process and subject to the University maintaining the same high standards of course delivery.

Subject to successful reaccreditation, this course will continue to be accredited by:

Institution of Engineering and Technology (IET)
Institution of Mechanical Engineers (IMechE)

Entry Requirements

We accept a range of qualifications, the most popular of which are detailed below.

UK students
Essential

At the point of application, you must have GCSE at Grade 4 (C) or above in English Language and Mathematics. Equivalent qualifications will be accepted.

80 UCAS tariff points from A Level with a minimum of 2 A Levels

Typical Offers
UK Qualification Requirements 2019/20
GCE A Level/ AS Level 80 UCAS tariff points from A Level with a minimum of 2 A Levels 

with at least one from a Science, Technology, Mathematics or Computing subject at A Level or equivalent.

Access to Higher Education Diploma In Engineering - Pass overall with 60 credits, 45 at Level 3 and 15 at Level 2, including with a minimum of 12 credits at Merit or Distinction.
BTEC National Diploma (12-units not including early years)/ Pearson BTEC Level 3 National Diploma D*D or combined with other level 3 qualifications.
BTEC Extended Diploma (18-units not including early years)/ Pearson BTEC Level 3 National Extended Diploma

Computing/Engineering preferred. Pass, Merit, Merit.

BTEC Subsidiary Diploma/ Pearson BTEC Level 3 National Extended Certificate Combined with other level 3 qualifications. Must include A Levels, BTEC QCF and/or OCR Cambridge Technical to a total of 80 points minimum.
International Baccalaureate Diploma

24 points: a total of 10 points or above from three Higher Level Subjects.

Students must have grade 5 in Maths (Higher Level)
AND
English Group A - Grade 4 or above,
OR
English Group B and Ab Initio - Grade 5

Irish Leaving Certificate Passes in six subjects at the higher grade including mathematics.
Scottish Higher/ Advanced Higher Passes in five subjects at the higher grade including mathematics.
Welsh Baccalaureate (core plus options) Must include A Levels, BTEC QCF and/or OCR Cambridge Technical to a total of 80 points minimum.
Other qualifications
If you have a qualification that is not listed in the table please refer to our full entry requirements on UCAS.

Further guidance on tariff points can be found on the UCAS website.
EU/International students
Essential
EU/Non-EU (International) Qualifications Requirements 2019/20
IELTS 6.0 overall with 5.5 minimum in all bands
International Baccalaureate Diploma (or equivalent, including internationally accredited Foundation courses).

24 points: a total of 10 points or above from three Higher Level Subjects.

Students must have grade 5 in Maths (Higher Level)
AND
English Group A - Grade 4 or above,
OR
English Group B and Ab Initio - Grade 5

Country-specific entry requirements and qualifications.

International Students

Entry requirements here

From A Level with a minimum of 2 A Levels

UK or EU students

Award Start Mode Duration Fees
BEng (Hons) Sep 2019 FT 4 years £9,250 per year Apply via UCAS
SW 5 years
TBC
Apply via UCAS

International Students

Award Start Mode Duration Fees
BEng (Hons) Sep 2019 FT 4 years £12,300 per year

If you're unable to use the online form for any reason, you can complete our PDF application form and equal opportunities PDF form instead. Fees for 2019/20 will be published as soon as possible. The University reserves the right to increase fees in line with inflation based on the Retail Prices Index or to reflect changes in Government funding policies or changes agreed by Parliament up to a maximum of five per cent.

Guidance for UK/EU students

UCAS

UK and EU students applying for most undergraduate degree courses in the UK will need to apply through UCAS.

The Universities and Colleges Admissions Service (UCAS) is a UK organisation responsible for managing applications to university and college.

Applying through UCAS
 Register with UCAS
 Login to UCAS
 Complete your details
 Select your course
 Write a personal statement
 Get a reference
 Pay your application fee
 Send UCAS your application

Additional costs

There are no compulsory additional costs or charges associated with studying on this course. While you may choose to purchase personal copies of text books, all our key text books are available from our library or online (subject to normal library loan and online access arrangements). If your course includes a residential study session, the accommodation costs for this are already included in your course fee.

Based on the past experience of our students, you might find it helpful to set aside about £50 for each year of your studies for stationery and study materials. All our students are provided with 100 free pages of printing each year to a maximum total value of £15.

Accommodation and living costs

The cost of accommodation and other living costs are not included within your course fees. More information on the cost of accommodation can be found in our accommodation pages.

The additional costs listed here are to be used for indicative purposes only and are based on the additional costs for the 2018/19 academic year. The additional costs for 2019/20 will be published as soon as possible.

Foundation Year

Mathematics for Engineers 1
20 credits

Mathematics plays a key role in establishing and grounding the professional skills of an engineer. Communicating the ideas of engineering is made both easier and harder by the use of mathematical language.

This module aims to help you become proficient at developing engineering models and arguments, and following them through to their logical conclusions, since application of these arguments has to include their interpretation both to and from the mathematical language.

Download the full module specification

Engineering Science 1
20 credits

The module aims to provide you with the knowledge and problem solving skills in physical science to enable you to progress to the next module in the science theme, Foundation Science II, and then on to the first year of an engineering degree.

As the practical aspects of physical science are delivered in another theme of the foundation year, the Foundation Science modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams, one of which contains predominantly mechanical science and the other predominantly electrical science.

Download the full module specification

Practical Skills 1
20 credits

This module aims to provide you with the practical and professional skills to enable you to progress to the next module in the practical theme, Practical Skills II, and then on to the first year of an engineering degree.

The theoretical aspects of physical science and maths are delivered in another theme of the foundation year. The Practical Skills modules sit alongside these and concentrate on the practical aspects to support your learning.

Download the full module specification

Mathematics for Engineers 2
20 credits

Mathematics plays a key role in establishing and grounding the professional skills of an engineer. Communicating the ideas of engineering is made both easier and harder by the use of mathematical language.

This module aims to help you become proficient at further developing engineering models and arguments, and following them through to their logical conclusions, since application of these arguments has to include their interpretation both to and from the mathematical language.

Download the full module specification

Practical Skills 2
20 credits

This module aims to provide the practical and professional skills to enable you to progress to the first year of an engineering degree.

As the theoretical aspects of physical science and maths are delivered in another theme of the foundation year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, communication and analysis and the third, a project space where you will have the opportunity to integrate learning from across all elements of the semester. 

Download the full module specification

Engineering Science 2
20 credits

The module aims to provide you with the knowledge and problem solving skills in physical science to enable you to progress to the first year of an engineering degree. The science theme contains the material normally encountered in an A level physics course which is relevant to entry to an engineering degree. As the practical aspects of physical science are delivered in another theme of the foundation year, the Foundation Science modules concentrate on the theoretical aspects.

Download the full module specification

Year One

Engineering Principles 1
20 credits

The module aims to provide the underpinning knowledge and problem solving skills in engineering science to enable you to progress to the next module in the theme, Engineering Principles II, and then on to the second year of a range of engineering degrees.

As the practical aspects of engineering science are delivered in another theme of the common first year, the Engineering Principles modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams one of which contains predominantly mechanical science and the other contains predominantly electrical science.

Download the full module specification

Engineering Practice
20 credits

The module aims to provide the practical and professional skills to enable you to progress to the next module in the practical theme, Practical Skills II, and then on to the second year of an engineering degree. As the theoretical aspects of physical science and maths are delivered in other themes of the first year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, communication and analysis and the third, a project space where you have the opportunity to integrate learning from across all elements of the semester.

Download the full module specification

Mathematical Modelling 1
20 credits

Mathematics plays a key role in establishing and grounding the skills of an engineer, and the ability to communicate the ideas of engineering that are expected of an engineering graduates.

The primary aim of this module is to provide the fundamental mathematical knowledge and techniques needed in order to enable you to use and apply such mathematical techniques for the evaluation, analysis, modelling and solution of realistic engineering problems. Application of these data sets has to include their interpretation both to and from the mathematical language. In addition, this module will introduce students to mathematical modelling software package. This will be used to plot, annotate basic signals and write simple programs to compute mathematical problems.

This module will develop your ability to both work on and communicate engineering realities to a wider audience, at a professional standard.

Download the full module specification

Engineering Principles 2
20 credits

The module aims to provide the underpinning knowledge and problem solving skills in engineering science to enable you to progress to the second year of a wide range of engineering degrees. As the practical aspects of engineering science are delivered in another theme of the common first year, the Engineering Principles modules concentrate on the theoretical aspects. The subject material will be delivered in two coherent streams one of which contains predominantly mechanical science and the other contains predominantly electrical science.

Download the full module specification

Mathematical Modelling 2
20 credits

This module will focus on introducing and building on well-established techniques for mathematically modelling dynamic systems (systems of interest for engineering) for contextualised engineering applications. The module will include an introduction to sophisticated signal analysis technique, Fourier series which is used to transform time-domain signals into their frequency spectra. The module is structured to include a mixture of lectures, tutorials and PC-based laboratories. The lectures will formally introduce material, in tutorials students will work through questions with tutor. The PC laboratories will involve using mathematical modelling software packages to implement mathematical operations.

Download the full module specification

Integrated Engineering Project
20 credits

The module aims to provide the practical and professional skills to enable you to progress on to the second year of an engineering degree. As the theoretical aspects of physical science and maths are delivered in other themes of the first year, the Practical Skills modules concentrate on the practical aspects.

The subject material will be delivered in three coherent streams one of which contains predominantly mechanical and electrical laboratory exercises, a second PC-based stream will include use of software to support project planning, design, communication and analysis and the third, a project space where you have the opportunity to integrate learning from across all elements of the semester.

Download the full module specification

Year Two

Thermodynamics and Fluid Mechanics
20 credits

The module aims to provide a basic understanding of thermodynamic and fluid mechanic concepts. The understanding of the transfer of energy within thermodynamic systems and the incurred losses is vital to improve efficiencies of such systems, especially in light of growing environmental concerns and increased economic cost.

The knowledge and understanding will be gained through a balanced mixture of lectures and tutorials, whereby the learning will be supported by experiments.

Download the full module specification

Design and Materials
20 credits

The module provides you with the opportunity to learn about design, sustainable development, teamwork and communication whilst contributing towards real international development projects.

You will also gain the ability to communicate design ideas and practical details, to evaluate and apply both tangible and subjective feedback, and to conceive, design, implement and operate practical solutions to design opportunities.

It is anticipated that the project vehicle for this module will be the Engineers without Borders Design for People Challenge.

Download the full module specification

Numerical Analysis
20 credits

The module introduces the mathematical concepts such as transform calculus and matrix theory used to solve systems of first and second order differential equations underpinning the engineering disciplines undertaken within the Faculty.

This provides you with the capability of modelling systems using both the transfer function and statespace paradigms. In particular, you will be able to model linear systems in continuous and discrete time as well as by frequency response methods.

Teaching and assessment will comprise not only traditional lectures and tutorials but also provide training in industry standard software for problem solving within coursework assessment.

Download the full module specification

Leading Engineering Endeavour
20 credits

An interdisciplinary module, you will work with students from all fields of engineering to develop skills in engineering leadership and experience creating a purposeful vision and delivering on that vision. This will set the professional skills for business in context by combining your technical course-specific knowledge with professional skills. It is proposed that the vehicle to deliver this will be the biomimicry global design challenge.

Download the full module specification

Mechanical Science
20 credits

The Mechanical Science module applies the principles of engineering, physics, and materials science to the design, analysis, manufacture, and maintenance of mechanical systems and components. It is a branch of engineering that enables you to design, produce, and operate machinery. In keeping with the programme philosophy the module encourages learning through the practical application of fundamental mechanical science principles to the analysis and solution real world problems.

Download the full module specification

Design and Manufacture
20 credits

This module develops your research skills, idea generation techniques, and ability to create CAD models and manufactured components.

You will also gain the ability to communicate design ideas and practical details, to evaluate and apply both tangible and subjective feedback, and to conceive, design, implement and operate practical solutions to design opportunities.

Download the full module specification

Year Three

Computer Aided Engineering
20 credits

In the development cycle of new and existing components, processes and systems the use of computer analysis has a strong role to play. Reduced lead times can mean faster arrival at the market than competitors and therefore gaining an advantage. Engineers are at the centre of the development process and therefore require a good understanding of the key aspects of computer aided engineering (CAE).

Download the full module specification

Dynamics and Control
20 credits

The module introduces you to the mathematical tools underpinning the analysis, modelling and design of complex vibrating systems and mechanisms as well as the software tools within an appropriate simulation environment used for their solution. Industry standard software will also be used for the design of dynamical control systems using both time and frequency domain techniques.

Teaching and assessment will comprise not only traditional lectures/tutorials, but also use of industry standard software for the purposes of mathematical modelling, all of which are assessed by examination.

Download the full module specification

Advanced Mechanics
20 credits

Mechanical engineers nowadays solve problems of high and multidisciplinary complexity. Although computational solutions generally lead to reliable results, the engineer should always attempt to validate the findings by alternative methods. This requires a thorough understanding of the underlying problems, but also the approach of reasonable simplification of complex systems without compromising validity.

Download the full module specification

Thermodynamics and Power and Energy Systems
20 credits

The dependency of the current economy of fossil fuels as source of power requires a shift in thinking by engineers and companies to design and develop more efficient machines, processes and systems. The module therefore aims to provide you with the knowledge and understanding required to analyse thermodynamic systems concerned with conversion processes between heat and work. In addition the issues and limitations of the energy generation process play also a vital part and how energy can be recovered from processes to improve the overall efficiency.

The module follows the Mechanical Engineering programme philosophy of developing your intellectual and practical competence in the thermodynamic, power generation and energy conversion aspects of mechanical engineering. Formal lectures, tutorials, hands-on experience in labs and solving of problem based scenarios will enhance the learning process.

Download the full module specification

Individual Honours Project
40 credits

The purpose of the module is to enable you to undertake a sustained, in-depth and research-informed project exploring an area that is of personal interest to you. In agreement with your supervisor, you will decide upon your topic which will take the form of a practical outcome (artefact) with accompanying contextual material. The main consideration when choosing your topic is that it must be aligned to the programme you are studying, and you should consider the relevance of this topic to your future academic or professional development.

At this level, you will be expected to work independently but you will receive additional one-to-one support from your supervisor, who will be familiar with your chosen topic area. As you progress on the module, extra support will be available and this may take the form of group seminars, workshops and online materials that will help to develop your project. 

Download the full module specification

You will be taught through lectures, tutorials and seminars, as well as lab-based work. You will gain a range of transferrable skills, such as communication, teamwork and more.

Knowledge and understanding is assessed formatively by work-based learning and problem solving, in-class tasks, seminar work, peer assessment and learning sets. Summative assessment is by way of assignments, projects, presentations, time-controlled assignments and end examinations, where appropriate to the individual module.

Intellectual skills, particularly analytical and problem solving skills, are developed using a range of case-studies and problem / task-based learning scenarios, promoting self-directed learning facilitated by problem-based learning centred upon industry practice and its inherent problems.

Assessment of such activities includes practical simulation and design exercises and individual and group projects, in addition to the methods mentioned above.

Attendance requirements

There are 30 attendance weeks in each academic year.

A typical week on this course will include 12-15 hours per week of contact time over four days, plus self study time.

Subject to successful reaccreditation, this course will continue to be accredited by:

Institution of Engineering and Technology (IET)
Institution of Engineering and Technology (IET) - full IEng

The course is accredited by the Institution of Engineering and Technology, ensuring it remains fresh and relevant, as well as boasting the best industry contacts.

Institution of Mechanical Engineers (IMechE)
Institution of Mechanical Engineers

The course is accredited by IMechE, ensuring our content remains fresh, relevant and replete with key industry information.

  • The accredited MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer and Students will need to complete an approved format of further learning pursuant to the requirements of UK-SPEC. 
  • The accredited MSc will also automatically meet in full, the exemplifying academic benchmark requirements for registration as an Incorporated Engineer (IEng).
  • The accredited MSc full meets the exemplifying academic benchmark requirements, for registration as a Chartered Engineer (CEng).

International Opportunities

If you are interested in undertaking part of your studies abroad, the Erasmus scheme may be of interest to you. It allows higher education students to study for part of their degree in another European country.

It is open to undergraduates in their second year (or above) and offers a unique opportunity to enhance your CV and experience new cultures. If you study with us you will have access to an Erasmus co-ordinator, who can provide information about which institutions we have links with.

Further Study

You could enrol on our highly regarded MSc Mechanical Engineering programme once you have completed your BEng (Hons) degree. We also offer a range of research (PhD) postgraduate engineering programmes that are suitable for graduates of this course. Details can be found on the postgraduate section of the website.

Through group work and project-based challenges, you will develop transferable and marketable skills and knowledge applicable to a variety of employment opportunities within the mechanical engineering and associated industries.

We will develop the skills, understandings and personal attributes that will help you stand out from the crowd when it comes to securing employment.

We will ensure you are professional, work-ready and enterprising, with a global outlook and the ability to solve problems creatively.

Placements

We aim to have you employer-ready by the time you graduate and as part of this commitment we encourage you to further enhance your career prospects by including an industrial placement in your course.

You will do your placement after the second year of study, which will extend the duration of your course to four years if you are studying on a full-time basis, and you’ll be supported throughout your time away.

Thanks to our excellent partnerships and strong relationships with industry, you could join the ranks of our students who have gained exceptionally high quality work experience at companies including Triumph, BMW and Bosch.

Placements provide the workplace experience that many employers look for and give you an invaluable opportunity to develop your practical expertise, earn money and try out a potential career path.

OpportUNIty

OpportUNIty Student Ambassador

OpportUNIty: Student Jobs on Campus ensures that our students are given a first opportunity to fill many part-time temporary positions within the University. This allows you to work while you study with us, fitting the job around your course commitments. By taking part in the scheme, you will gain valuable experiences and employability skills, enhancing your prospects in the job market.

It will also allow you to become more involved in University life by delivering, leading and supporting many aspects of the learning experience, from administration to research and mentoring roles.

Graduate Success

Thanks to our methods of teaching and learning, as well as our industry links and academic staff that can draw on years of relevant industry practice, our graduates have gone on to work for some of the UK’s most prestigious employers including:

  • Jaguar Land Rover
  • Morgan Motors
  • GKN
  • Bentley
  • Mercedes
  • Rolls-Royce
  • JCB

Birmingham City University is a vibrant and multicultural university in the heart of a modern and diverse city. We welcome many international students every year – there are currently students from more than 80 countries among our student community.

The University is conveniently placed, with Birmingham International Airport nearby and first-rate transport connections to London and the rest of the UK.

Our international pages contain a wealth of information for international students who are considering applying to study here, including:

Birmingham City University International College (BCUIC)

International students who have a serious interest in studying with us but who perhaps cannot meet the direct entry requirements, academic or English, or who have been out of education for some time, can enter Birmingham City University International College (BCUIC) and begin their degree studies.

BCUIC

BCUIC is part of the global Navitas Group, an internationally recognised education provider, and the partnership allows students to access the University’s facilities and services and move seamlessly through to achieving a Bachelor’s degree from Birmingham City University.

Learn more about BCUIC

Our Facilities

We are constantly investing in our estate and are currently in the process of spending £260 million on new learning facilities.

Building work on our new Conservatoire began in the summer of 2015 – and is scheduled for completion in summer 2017. This, along with the construction of a new city centre accommodation block, means our students have access to their very own building sites.

We couple this with the more traditional, office-based facilities:

Surveying equipment

Part of your learning activity will be hands-on, including carrying out survey work using a range of equipment, such as levels, theodolites, measuring tapes.

Computer Assisted Design (CAD)

You will be provided with the latest CAD software – free of charge – to enable you to acquire the skills you need in a modern design office.

Learning from industry experts

Discover more about the industry experts you can meet on our Engineering degree courses.

Laura Leyland is one of our lecturers, watch this video to find out more.

Man-Fai Yau

Senior Lecturer

Man-Fai has 10 years' experience in private sector industry, two years' with a Knowledge Transfer Partnership (KTP) and 12 years' university lecturing.